SUBJECT DETAILS FOR JTKEK PROGRAMMES

SEMESTER 1

BETI 1303
ELECTRIC CIRCUIT FUNDAMENTAL /
PENGENALAN LITAR ELEKTRIK

LEARNING OUTCOMES
Upon completion of this subject, student should be able to:
1. Understand the fundamental Ohm’s Law and Kirchhoff’s Laws.
2. Analyze DC and AC (Steady state) circuits using Mesh and Nodal analysis.
3. Analyze DC and AC (Steady state) circuits using Superposition, Thevenin, Norton and Maximum Power Transfer Theorems.
4. Simulate the operation of electric circuit using computer simulation software.
5. Assemble electrical components correctly and measure electrical quantities for DC circuits.

SYNOPSIS
This subject introduces the students to Ohm’s Law, Kirchhoff’s Laws and use them to calculate current, voltage and power in DC / AC (steady state) circuits. Following this the students will learn the analytical methods namely mesh and nodal analysis. The use of theorems like Thevenin, Norton, Superposition and the Maximum Power Transfer will follow next. The applications of the above tools will cover both dc and ac circuits. This subject will be supported by laboratory works to impart to the students some basic practical skills.

REFERENCES

BETE 1303
ENGINEERING WORKSHOP I /
BENGKEL KEJURUTERAAN I

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Demonstrate safety and health regulation in the lab activity.
2. Demonstrate and diagnose an electronic circuit using electronic testing equipment.
3. Manipulate the simulation tools for the electronic circuit analysis according to IPC standard.
4. Describe and present the given assignment based on technical report format.
5. Work as a team in practicing the problem based learning project.
6. Display the ability of presenting lab report and project outcome orally and in writing.

SYNOPSIS

REFERENCES
1. Environmental, Safety and Health Engineering, Gayle Woodside, WILEY
4. EMC and the Printed Circuit Board: Design, Theory and Layout Made Simple, Mark.I, WILEY
5. Industrial Bioseparations: Principles and Practice, Daniel Forciniti, WILEY
LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Apply basic programming principles and algorithms of C programming language.
2. Construct C programming structure using programming fundamentals and principles.
3. Analyze small to medium scale problems and develop solutions.
4. Demonstrate an understanding of ethical and legal responsibility in code of conduct.

SYNOPSIS
This subject will discuss on basic programming principles such as introduction to C programming consists of syntax, variables and basic data type, more fundamentals programming structure such as operator, rules / condition, looping, function, array and sequences. The subject is a compulsory to build a basic background in programming. Visual C++ IDE will be used for the compiler and editor in this subject.

REFERENCES

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
2. Manipulate the Auto CAD software in making of electronic circuit and other engineering drawing.
3. Construct the printed circuit board using Proteus software.
4. Describe and present the given assignment based on technical format.
5. Work as a team in doing an electronic mini project.
6. Display the ability of presenting lab report and project outcome orally and in writing.

SYNOPSIS
This subject will discuss on simulation tools that covers the software of MATLAB, PSpice and AutoCad. Domestic Wiring – theory on domestic wiring, wiring diagram and lab practical. PCB circuit design fabrication using the design software of Proteus, practical design of the printed circuit board using the Proteus.

REFERENCES
1. Environmental, Safety and Health Engineering, Gayle Woodside, WILEY
4. EMC and the Printed Circuit Board: Design, Theory and Layout Made Simple, Mark I, WILEY
5. Industrial Bioseparations: Principles and Practice, Daniel Forcinit, WILEY
LEARNING OUTCOMES
Upon completing this subject, the student should be able to:
1. Describe first order for RL and RC circuits transient analysis.
2. Describe second order for RLC circuits transient analysis.
3. Convert time domain into s-domain using Laplace transforms method and analyze its frequency response.
5. Determine the parameters of two-port network connected in series, parallel or cascade.

SYNOPSIS
This subject exposes students to the application of several tools in analyzing electrical circuits, such as the Laplace transform and two ports network. The students are required to use the tools to analyze transient and frequency response in electrical circuit.

REFERENCES

PRE-REQUISITE
BETI 1303
ELECTRIC CIRCUIT FUNDAMENTAL / PENGENALAN LITAR ELEKTRIK

ADVANCED ELECTRIC CIRCUIT / LITAR ELEKTRIK LANJUTAN

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Apply the semiconductors theory in electronic applications.
2. Solve problems related to the diode application circuit.
3. Construct electronic circuit when designing simple BJT amplifier circuits.
5. Display assignments and technical reports both orally and in writing

SYNOPSIS
This course will discuss:

REFERENCES
BETE 2373
ELECTRICAL TECHNOLOGY /
TEKNOLOGI ELEKTRIK

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Apply the concept of AC voltage and current, single phase, three-phase, transformer and magnetic circuit.
2. Apply the principles of the transformer, magnetic circuit, single phase, three-phase and alternating voltage and current.
3. Mix the application of the power system and electrical transmission in single phase and three-phase.
4. Classify the application of the alternating voltage and current, single phase, three-phase, transformer and magnetic circuit.
5. Work as a team to measure correctly the voltage and current in single phase, transformer and magnetic in laboratory experiments.

SYNOPSIS
This subject will discuss on Alternating Voltage and Current, Phasor, Magnetic Circuit, Electromotive force, magnetic field strength, relation between B and H, Kirchhoff’s law magnetic hysteresis, Single Phase Circuit, series resonance, parallel resonance, power factor, transformer, phasor diagram, equivalent circuit voltage regulation and efficiency, O/C and S/C test, Voltage generation and excitation methods, Basic principles of power system, per unit system, electrical transmission.

REFERENCES

SEMESTER 3
BETE 2333
ANALOGUE ELECTRONIC DEVICES /
PERANTI ELEKTRONIK ANALOG

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Apply the fundamentals of small signal audio amplifiers.
2. Measure response of single stage audio amplifiers using both BJTs and FETs.
3. Demonstrate single stage and multistage amplifiers at mid-band, low and high frequencies.
4. Construct the design of Op-Amps, and analyze basic Op-amp circuits.
5. Display findings orally or in writing by performing assignments individually or in groups effectively.

SYNOPSIS
This subject will discuss on BJT Transistor modelling, CE, CC and CB configuration, BJT small signal analysis, Feedback configuration, FET small-signal analysis, Frequency response, Bode plot, Bandwidth, Special amplifier: cascade, Darlington, multistage, differential amplifier circuit, Operational amplifiers: inverting, non-inverting, summing and buffer.

REFERENCES

PRE-REQUISITE
BETE 1323
ELECTRONIC FUNDAMENTALS / PENGENALAN ELEKTRONIK
BETC 2404
DIGITAL ELECTRONICS / ELEKTRONIK DIGITAL

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Describe basic functions of digital components
2. Design digital system using combinational and sequential logic.
3. Display and evaluate the performance of sequential logic circuits.
4. Perform effectively as individual or in group to complete tasks and assignment
5. Present the assignments and present technical reports both orally and in writing

SYNOPSIS
This subject will cover the topics of transistor-transistor logic. Logic functions, logic diagrams, Karnaugh maps, Boolean algebra, DeMorgan’s Theorem. Numerical codes, arithmetic functions. Combinational circuits such as encoders, decoders, multiplexers, de-multiplexers, comparators. This subject also covers the introduction to memory, programmable logic devices and microcomputer systems. Student will learn the topics on latches and flip-flops, flip-flops operating characteristics and applications. Registers and counters, shift registers, synchronous, asynchronous and modulo counters.

REFERENCES

BETE 2364
CONTROL PRINCIPLES / PRINSIP KAWALAN

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Measure the response characteristic and differentiate them between open loop and closed loop system
2. Solve mathematical model for electrical and mechanical systems using transfer function and state space method.
3. Solve the time response from the transfer function and use poles and zeros to determine the response of a control system.
5. Demonstrate performance of Gain Adjustment compensator in controlling broadly defined system.
6. Display the ability of presenting lab report orally and in writing.

SYNOPSIS
This subject will discuss on introduction to control system, frequency domain modelling, Laplace transform, transfer function, electric network transfer function, translational mechanical system, rotational mechanical system transfer function, time domain modelling, general state space representation, transfer function and state space conversion, time response, poles, zeros and system response, First and Second order systems, under-damped system, reduction of multiple subsystems, blocks diagrams, feedback systems, signal flow graphs, Mason’s rule, Routh-Hurwitz criterion and Gain Adjustment compensator design.

REFERENCES
LEARNING OUTCOMES

Upon completion of this subject, students should be able to:

1. Explain different types of signal and systems properties that are commonly used in engineering.
2. Produce the Fourier series and transform in terms of applicable time functions and the resulting spectral properties.
3. Apply the continuous-time Fourier Transform in analyzing non-periodic signal.
4. Use Laplace transform in 2nd order circuit analysis.
5. Manipulate and explain a simple Matlab programming for signal and system applications.
6. Report and explain their given assignment clearly.

SYNOPSIS


REFERENCES

BETT 2324
DATA COMMUNICATION & NETWORKING / KOMUNIKASI & RANGKAIAN DATA

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Explain data communication, architecture, TCP/IP, Open System Interconnection (OSI), and network models.
2. Explain principles of routing, routing protocols and operation of routers.
3. Analyse and troubleshoot the primary routing protocols RIPv1, RIPv2, EIGRP, and OSPF.
4. Analyze basic functionality, the technologies and protocols needed in a converged switched network and Wide Area Network (WAN)
5. Work together with team members during experiments.
6. Report and explain their given assignment clearly.

SYNOPSIS
This subject will explains the role and nature of the main application protocols and their relation to protocols and services provided to them by the lower layers of the network. This subject are technology focused and student thoroughly learn each technology (Routing, switching and WANs).

The rationale of offering this subject is as providing vast knowledge on networking topics, from fundamentals to advanced application and services, while providing hands-on experience and as well as preparation for Certified Cisco Network Associate (CCNA) exams.

REFERENCES
1. Cisco Networking Academy CCNA Exploration course material, cisco.netacad.net

BETT 2333
COMMUNICATION PRINCIPLE / PRINSIP KOMUNIKASI

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Demonstrate basic principles and components of telecommunication system.
2. Measure the performance of analog and frequency modulation techniques through experiments that commonly used in telecommunication system.
3. Design solution for linear or angle modulation system based on given specifications.
4. Demonstrate the effects of noise in telecommunication systems.
5. Work and discuss effectively either individually or in group for any assignment and experiment.
6. Construct experiments and display technical reports.

SYNOPSIS
This subject will discuss on Introduction to Telecommunication, Linear Modulation, Single Sideband (SSB) Communication Systems, Angle Modulation, Noise and Introduction to Digital Communication

The rationale of offering this subject is as the progression of communication system where students should have knowledge of communication principles and basic skills required by the industry.

REFERENCES
LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Sketch and explain the different types of discrete signal and systems properties that are commonly used in engineering.
2. Classify the properties of discrete-time Fourier Series (DTFS) and discrete-time Fourier transform (DTFT).
3. Apply the convolution sum method in order to find output of discrete-time system.
4. Explain the important of discrete Fourier Transform (DFT).
5. Manipulate and explain a simple Matlab programming for discrete-time signal and system.
6. Report and explain their given assignment clearly.

SYNOPSIS
The subject will cover various topics such as Introduction to Discrete-Time Signals and Systems: Fundamental Concept, Transformations of Discrete-Time Signals, Signal Characteristics, Common Signals, Discrete-Time Systems and Its Properties; Time-Domain Analysis of Discrete-Time Signals and Systems: Impulse response of a system, Convolution sum, Graphical method for evaluating the convolution sum, Properties of the convolution sum, Impulse response of LTID systems; Discrete-Time Fourier Series And Transform: Discrete-time Fourier series, Fourier transform for aperiodic functions, Existence of the DTFT, DTFT of periodic functions, Properties of the DTFT and the DFTS, etc; Discrete Fourier Transform: Continuous to discrete Fourier transform, Discrete Fourier transform, Spectrum analysis using the DFT, Properties of the DFT, Convolution using the DFT, etc.

REFERENCES

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Explain radio frequency spectrum and allocations.
2. Explain digital broadcasting technology.
3. Construct and analyse telecommunication switching system and technology.
4. Solve optical communication system, wireless communication, satellite and terrestrial system.
5. Display and explain their assignment clearly.

SYNOPSIS
This subject will discuss on Radio Spectrum, Broadcasting, PSTN/ISDN, Satellite System, Radar System, Optical Communication and Wireless Communication. The rationale of offering this subject is as providing fundamental knowledge on various types of telecommunication system and as foundation for higher level subjects.

REFERENCES
BETC 3483
FUNDAMENTAL OF MICROPROCESSOR & MICROCONTROLLER /
ASAS MIKROPEMPROSES & MIKROPENGAWAL

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Explain fundamental concepts of microprocessor and microcontroller architecture and operations.
2. Develop the interfacing circuitry of basic microprocessor/microcontroller-based systems and its supporting components by using assembly language/high level programming.
3. Basic design of 68K microprocessor memory decoding circuits and microcontroller applications.
4. Perform effectively in given tasks and assignment by managing different information from multiple resources.

SYNOPSIS
This subject covers basic fundamental of microprocessors and microcontroller, assembly language programming and hardware interfacing. This course is essentially divided into 3 sections. The first part covers on microprocessor / microcontroller-based Systems and Introduction to 68000 Microprocessor and PIC16F877A. The second part deals with the some basic topics of microprocessor instruction set and high level language. The last segment examines topics on The 68000 hardware and PIC16F877A architecture, memory system and Input/output system.

REFERENCES

BETT 3363
TELECOMMUNICATION ELECTRONIC /
ELEKTRONIK TELEKOMUNIKASI

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Analyze small signal RF Amplifier components
2. Analyze RF oscillators such as Hartley, Colpitts and Clapp
3. Explain and apply the function of PLLs
4. Construct and analyze various types RF oscillator
5. Design a simple filter design for receiver circuit
6. Display and explain their given assignment clearly.

SYNOPSIS
This subject will discuss on Radio Frequency Amplifiers, Radio Frequency Oscillators, PLLs and Frequency Synthesizers, Transmitter Circuits and Receiver Circuits. The rationale of offering this subject is as the progression of communication system where students should have knowledge of communication electronics and basic skills required by the industry.

REFERENCES
BETT 3373
DIGITAL SIGNAL PROCESSING / PEMPROSESAN ISYARAT DIGITAL

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Explain and apply the correlation function, random variable, statistical properties of random signal in digital signal processing.
2. Apply the concepts in digital signal processing such in discrete-time signals and systems and spectrum representations.
3. Apply z-transform in the impulse response, signal flow graph using difference equations, stability determination.
4. Organize the implementation of digital signal processing in a system and demonstrate by using Matlab.
5. Report and explain their assignment clearly either individual or groups.

SYNOPSIS
This subject will discuss on Introduction to DSP, discrete-time signals and systems, spectrum of representation of discrete-time signals, discrete Fourier transform, difference equations and discrete-time systems, z-transform and its applications, analysis and design of digital filters and random signals.

REFERENCES

BETT 3383
ELECTROMAGNETIC / ELEKTROMAGNETIK

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Explain the principles involving magnetostatic, electrostatic, time varying field and wave propagation.
2. Apply the concepts and laws of magnetostatic, electrostatic and time varying fields.
3. Apply appropriate laws to solve problems related to magnetostatic, electrostatic, time varying field and wave.
4. Demonstrate the capability of conducting assignments in relation to the study of electromagnetic individually or in a group.

SYNOPSIS
This subject will discuss on Vector analysis: Vector algebra, coordinate system and transformation, vector calculus; Electrostatics: Electrostatic fields, Gauss Law, Poisson’s equation, electric fields in material space, electrostatic boundary; Magnetostatics: Magnetostatic fields, Stokes Theorem, Biot-Savart Law, Gauss Law, magnetic forces, material and devices and magnetostatic boundary; Waves: Maxwell’s equations, Faraday’s Law, time-varying electromagnetic field, induced emf, displacement current. Electromagnetic wave propagation: free space, lossy and lossless dielectric, etc.

REFERENCES
SEMESTER 6

BETT 3403
DIGITAL COMMUNICATION / KOMUNIKASI DIGITAL

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Classify various types of bandpass digital signalling techniques including their spectral efficiencies.
2. Design a digital receiver system by taking into consideration the noise performance.
3. Solve various types of equalization available to encounter intersymbol interference and differentiate between various types of multiplexing techniques in digital communication systems.
4. Explain the importance of signal synchronization and techniques used in spreading the information signal as well as their advantages and disadvantages.
5. Work effectively either individually or group for any assignment given.
6. Classify various types of bandpass digital signalling techniques including their spectral efficiencies.

SYNOPSIS
This subject will discuss on Review of Baseband Signalling, Bandpass Signalling, Baseband and Bandpass Detection, Equalization, Synchronization, Multiplexing and Multiple Access and Spread Spectrum. The rationale of offering this subject is as the progression of communication system where students should have knowledge of communication principles and basic skills required by the industry.

REFERENCES

PRE-REQUISITE
BETC 1313
PROGRAMMING FUNDAMENTAL / ASAS PENGATURCARAAN

BETE 4443
QUALITY MANAGEMENT / PENGURUSAN KUALITI

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Use and understanding the quality concepts and the different perspective on quality theories.
2. To apply the quality tools to solve any problems in organisation.
3. Work effectively as individual or in a group.
4. Study and explain the application of sig-sigma to improve the quality of management, process and product in organisation.
5. Managing the international quality standard for the customer’s satisfaction.

SYNOPSIS
This subject will discuss on the different of quality theories for many organisation, comparisme international quality standard for customer satisfaction. The designing of strategy planning, strategy process and ethic to enhance the quality improvement for process and, product with using quality tools. Six -sigma are using for management to improve the mangement strategy planning.

REFERENCES
3. Stephen R. Covey’s book, The 7 Habits of Highly Effective People
BETT 3393
TELECOMMUNICATION SWITCHING SYSTEM / SISTEM PENSUSIAN TELEKOMUNIKASI

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Discover the evolution of switching techniques and system in telecommunication network.
2. Explain the functions of main elements in Public Switched Telephone Network.
3. Analyse switching stages.
4. Apply telecommunication traffic engineering to evaluate network performance.
5. Identify the importance of signalling in telecommunication network.
6. Construct, evaluate the application of time division switching in telecommunication network.

SYNOPSIS
This subject will discuss on Introduction & Evolution of Switching System, Public Switched Telephone Network (PSTN), Telecommunication Traffic, Switching Network, Time Division Switching, Telecommunication Signalling and Network. The rationale of offering this subject is as telecommunication switching system is one of the important elements in telecommunication system, students will be analysing the functionality as well as evaluating the network performance as required by the industry.

REFERENCES

BETU 3764
BACHELOR DEGREE PROJECT I / PROJEK SARJANA MUDA 1

LEARNING OUTCOMES
At the end of the subject, students should be able to:
1. Explain the problem, objectives and scope of project associated to the industrial or community needs.
2. Use related previous work and its relevant theory.
3. Choose a proper methodology.
4. Present the preliminary findings in the oral and written forms effectively.

SYNOPSIS
The student needs to plan and implement the project individually that related to the respective engineering technology field. The student should implement a project, do the analysis and apply the theory to solve the problems related to topic. At the end, the student should write a problem based learning report that covers problem statement, literature review, methodology to overcome the problem. The student needs to achieve the objective of the project and presented it in the report.

REFERENCES
Manual Projek Sarjana Muda (PSM), Fakulti Teknologi Kejuruteraan, Universiti Teknikal Malaysia Melaka.
LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Illustrate transmission line circuits at RF and microwave frequencies
2. Solve transmission line problems by construct matching network using the Smith Chart
3. Design and analyze the EM transmission characteristics of planar lines and waveguides for desired requirements.
4. Apply the RF networks properties by using scattering parameter
5. Construct and explain the passive and active RF/microwave components that fulfill the desired specifications.
6. Construct and optimize the passive and active RF/microwave components using RF simulation software.
7. Report and explain their given assignment clearly.

SYNOPSIS
This subject will discuss on Introduction to RF and Microwave Engineering; Transmission Lines; Microwave Network Analysis; Impedance Matching and Tuning; Power Dividers and Couplers; Microwave Filter and Microwave Amplifier.

REFERENCES

SYNOPSIS
This is the second part of the Bachelor Degree Project. Students are expected to continue the project done in Bachelor degree Project Part 1 till completion. At the end of the semester students are required to submit the Bachelor Degree Project report both orally and in writing for assessment.

REFERENCES

PRE-REQUISITE
BETU 3764
BACHELOR DEGREE PROJECT I / PROJECT SARJANA MUDA I
BETT 4803
SATELLITE COMMUNICATION / KOMUNIKASI SATELIT

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Categorize, identify and analyze the basic concept of satellite communication.
2. Design and evaluate the satellite link for specific carrier over noise ratio.
3. Explain critically the orbit mechanic and earth station.
4. Construct and analyze satellite subsystem.
5. Report and explain their given assignment clearly either individually or in group.

SYNOPSIS
This subject will discuss on introduction to satellite communication - frequency allocations, applications, future trends satellite communication; Orbital mechanics and launchers- Orbital Mechanics, Look angle determination; Satellite subsystem - telemetry, tracking, command and monitoring, power systems, communication subsystems, satellite antenna; Satellite Link Design - design of downlink, uplink design, design of satellite links for specific C/N ; and Earth station technology.

REFERENCES

BETT 4813
MOBILE COMMUNICATION / KOMUNIKASI MUDAH ALIH

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Explain the basic concepts of a mobile communication system.
2. Design a model of cellular radio system communication and analyze their operation and performance.
3. Solve the effect of mobile radio propagations.
4. Classify the scope concerning the various standards of mobile radio, and the capability limits.
5. Construct and analyze the GSM system.
6. Report and explain their given assignment clearly.

SYNOPSIS
This subject will discuss on Introduction and Basic Concept of Mobile Communication System, Radio Wave propagation in Mobile Communication Systems, High Spectrum Efficiency Modulation Systems, Zone Techniques for Configuration and Channel Assignment, Techniques to Improve Transmission Quality and Error Control Techniques. Mobile communications technology has seen a thriving development in recent years. Driven by technological advancements as well as application demands, various classes of communication networks emerged. This is why this subject should be included in the program.

REFERENCES
LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Discover the basic properties of light in semiconductor and various components of optical communication system.
2. Construct measure and explain the working principle of a laser diode, LED and photodetector, their characteristics and structures.
3. Design and analyze the appropriate fiber optical network with optima performances.
4. Report and explain their given assignment clearly.

SYNOPSIS

REFERENCES

LEARNING OUTCOMES
Upon completion of this subject, students should be able to:
1. Categorize, Identify and analyze the basic antenna parameters.
2. Design and evaluate the antenna structures to satisfy the desired requirements.
3. Construct and optimize basic and advanced antenna structures that fulfill desired specification by using the 3D simulation software.
5. Report and explain their given assignment clearly.

SYNOPSIS
This course will discuss on Introduction and Fundamentals of Antenna, Antenna Solution using Maxwell Equation, Types of Antenna, Matching and Feeding Networks, Antenna Measurement and Introduction to Radio-wave Propagation.

REFERENCES
SEMESTER 8

BETU 4786
INDUSTRIAL TRAINING / LATIHAN INDUSTRI

LEARNING OUTCOME
At the end of the subject, students should be able to:
1. Show technical competencies and skills gained throughout their internship.
2. Prepare a report on the industrial field daily activities in the log book systematically.
3. Communicate effectively with staff, colleagues and other personnel.
4. Practice professional ethics in accordance with industry rules and regulations.

SYNOPSIS
All students are required to undergo industrial training as part of their curriculum to complete four (4) years course for the Bachelor of Engineering Technology. The duration of training is 24 weeks and it will be taken place at the end of the course (semester 8). The students are expected to gain knowledge and enhance their technical skills within industrial environment relevant to their field of study.

REFERENCES

BETU 4796
INDUSTRIAL TRAINING REPORT / LAPORAN LATIHAN INDUSTRI

LEARNING OUTCOME
At the end of the subject, students should be able to:
1. Produce industrial training report
2. Present report orally on working experience

SYNOPSIS
All students are required to undergo industrial training as part of their curriculum to complete four (4) years course for the Bachelor of Engineering Technology. The duration of training is 24 weeks and it will be taken place at the end of the course (semester 8). The students are expected to gain knowledge and enhance their technical skills within industrial environment relevant to their field of study.

PRE-REQUISITE
Student required to pass Industrial Training BETU 4786 in order to pass Industrial training report.

REFERENCES